

PGHVC, Railways presentation

PQC STATCON Instantaneous & Stepless Power Quality Compensation for Dynamic Reactive Power & Unbalanced loads

Railways Traction Power Supply

- Railway load is a AC 50Hz 1-phase through 2 x 25 KV Auto Transformer (between CATENARY & FEEDER)
- Maximum harmonics recorded is 3rd Harmonic
- Railway supply voltage is 25KV AC
- Supply Voltage variation +/- 20%.
- Loads are frequent & rapidly varying in nature i.e varies from no load and overload.

.

Railways Typical TSS SLD

POWER SUPPLY DIAGRAM

Railways Technical requirement

- Power Factor Correction.
- Power Quality Improvement.
- Harmonic Reduction (below IEEE 519 limit).
- Improving of voltage profile
- Improving System performance or Enhancing system capability.

Railways TSS Supply Voltage variations > 20%

TSS Vs kV

Railways TSS Current Variations

TSS Vs Load Current)

Railways TSS Apparent Power Demand > 15 MVA

TSS Vs kVA

Railways TSS Average Load PF < 0.8

TSS Vs P.F.

Railways TSS Reactive Power Demand > 10 MVAR

TSS Vs kVAr

🗖 kVAr max 🗖 kVAr min

TSS Vs THD-V

TSS Vs THD-I

Railways TSS Individual Current THD

TSS Vs 3rd, 5th, 7th

Railways TSS Power Quality Issues

- Recorded huge amount of 3rd & 5th Harmonics currents and excessive THDV and THDI !!!
- Recorded very high and fast reactive Power demand.
- Various problem associated in TSSs caused due to above two basic requirements,
 - Frequent nuisance feeder tripping
 - Transformer heating / Insulation failure
 - Caused O/V and U/V tripping
 - O/C caused due to excessive fast reactive power demand
 - Harmonic amplification / resonance

Reactive power in a power system network

- Responsible for transfer of energy
- Reactive power
 - Enabler for conversion of real power
 - Not a form of energy
 - Flows back and forth, causes loss in the transmission/distribution system
 - Local supply of reactive power improves the system efficiency
- Apparent power
 - Vectorial sum of Active + Reactive

Reactive power in a network Limitation with conventional schemes

Power electronics based compensator Instantaneous stepless reactive power compensation

- IGBT based power electronic current source
- Fast dynamic response
- Smooth and step-less
- Inductive/capacitive reactive power operation
- Unbalance compensation
- Operates in shunt with loads

Basic operating principle Of PQC – STATCON

Reactive Power Compensation(RPC) by STATCON: CASE-1: When Vi > Vs

RPC BY STATCON: CASE-2: When Vi < Vs

RPC BY STATCON: CASE-3: When Vi = Vs

PQC-STATCON Key benefits

- Improves power factor & power quality
- Enhanced energy efficiency by reducing system losses
- Reduced Carbon footprint
- Improves the reliability of existing capacitor banks under dynamic condition
- Reduces maintenance need and enhances life of electrical Installations
- Easy installation & commissioning
- Easy and convenient operation with touch screen interface
- No risk of harmonic amplification

PQC-STATCON Modes of operation

- 1. Dynamic compensation modes
 - Open loop (Load CT Mode)
 - Closed loop (Grid CT Mode), *Highest accuracy and the most recommended configuration*
- 2. Fixed Compensation Mode

Multiple STATCONs in parallel can share the same CT feedback

PQC-STATCON technology and features Instantaneous and precise control

PQC-STATCON technology and features Energy efficient operation

Energy save mode

- Programmable option
- IGBT converter is switched off after 30 s, during idle condition
- Cooling system is turned off, after 2 minutes
- POC-STATCON enters deep sleep mode
- Delivers rated kvar within 8 cycles(from sleep mode) of load demand

PQC-STATCON technology and features Reliability is an important factor!

Rugged protections -PQC-STATCON

Protection

- Over current protection
- DC over voltage protection
- IGBT short circuit protection
- Over temperature protection
- Cooling system failure detection

- IGBT stack failure detection
- Supply overvoltage/under voltage protection
- Switchgear acknowledgement feedback errors
- Unstable grid detection
- Door open detection

Unique advantages of PQC-STATCON Parallel operation

In parallel system of PQC-STATCON, the system reliability will be increased by 'X' times, unlike other ONE MASTER-SLAVE systems where, in the event of master failure the total system gets to shutdown. In PQC-STATCON all individual PQC-STATCONs are capable of being a master and will take over as and when required.

Operation with parallel fixed capacitor banks Cost effective - more kvar / \$

• PQC-STATCON doubling the dynamic compensation range with parallel capacitor banks.

Typical STATCON SOLUTION Typical HV/MV Applications

PQC-STATCON Sizing for reactive power and imbalance

To quickly calculate the size of a PQC-STATCON based reactive power compensation system,

Calculate the required capacity for dynamic compensation through PQC STATCON, which is half of the total dynamic compensation requirement

 $Q_{PQC-STATCON}^* = Q_{dyn}/2 = (Q_{max} - Q_{min})/2$

Calculate the required capacity for fixed capacitor based compensation, which is the sum of base compensation requirement and half of the total dynamic compensation requirement.

$$Q_{capacitor} = Q_{base} + Q_{dyn}/2 = Q_{base} + (Q_{max} - Q_{min})/2$$

Note:

• To perform load balancing, add the negative sequence demand of load

PQC-STATCON Sizing for reactive power and imbalance

Proposed Scheme for Railways

1/ Load CT, Summation CT & CT Cables

Note: The above proposed scheme is based on +/-250kvar PQCS-STATCON. However, the individual panel kvar rating & number of panels may get changed at the time of detailed engineering keeping the total +/-kvar of the system remain unchanged.

© ABB Group March 7, 2017 | Slide 32

ABB STATCON Reference List Indian Railways

			Statcon Installed	
Sr. no.	Railway & Division.	TSS Name	rating	Fixed Capacitor
	Central Railway Bhusawal Division			
	1	Lasalgaon	+/- 1200 KVAr	1800KVAR
	Central Railway Bhusawal Division			
	2	Pimperkhed	+/- 1200 KVAr	1800KVAR
	Central Railway Nagpur Division			
	3	Multai	+/- 1700 KVAr	2400KVAR
	Central Railway Nagpur Division			
		Detail	1/ 4700 1/1/0	04001040
		Betui	+/- 1700 KVAF	2400KVAR
	Central Rallway Nagpur Division			
	5	Pandhurna	+/ 1100 KV/Ar	1500K)/AB
	Control Boilway Nognyr Division	Fanununa	+/- 1100 KVAI	ISOURVAR
	Central Rallway Nagpur Division			
	6	Ghoradonari	+/- 1200 KV/Ar	1000KV/AP
	•	Ghoradongh	+/- 1200 RVAI	ISOURVAR
	Central Railway Wadibunder Division			
	7	Kasara	+/- 2400 Kvar	2400KVAR
	Central Railway Wadibunder Division			
	8	Tambadmal	+/- 2400 Kvar	2400KVAR
	9 Southern Railway Salem Division	Bommidi	+/- 1800 Kvar	Nil
	10 Southern Railway Chennai Division	Tambaram	+/- 1800 Kvar	2400KVAR
	11 East Coast Railway Vizag Division	Dilimili	+/- 1200 Kvar	1500KVAR
	12East Coast Railway Vizag Division	Gidam	+/- 2400 Kvar	2400KVAR
	13West Central Railway Kota Division	Ramganimandi	+/- 2400 Kvar	3600KVAR
		Ranganjinana	., 24001004	SUCCIVAR
	14Northern Railway Lucknow Division	Amausi	+/- 2100 Kvar	-
	45 West Central Bailway Bhonal Division	Culabaani	+/ 2400 Kwar	2400/040
	is west central Railway Briopal Division	Gulabyanj	+/- 2400 Kvai	2400NVAR
	16Northern Railway Lucknow Division	Basai	+/-2100 Kvar	7700 KVAR+9900KVAr
				55001010
	1 / Northern Railway Lucknow Division	Datia	+/-1200 Kvar	5500KVAr
	18 RVNL, kolkata	Balichak	+/-3000	4000KVAr+3500KVAr

Power and productivity for a better world[™]

