

POWER QUALITY SEMINAR OF IRAN, 2ND MARCH 2017

Power Quality Seminar

Abel-Zhang, Power Quality Center Manager

Contents

Capacitor Unit Capacitor Shunt Bank Type Solution of Filter

©ABB March 7, 2017 | Slide 2

Contents

Capacitor Unit

Capacitor Shunt Bank Type Solution of Filter

©ABB March 7, 2017 | Slide 3

HV Capacitor Unit Application in Power Grid

©ABB March 7, 2017 | Slide 4

HV Capacitor Unit Product Portfolio

Single-Phase Capacitor

- Oil immersed Capacitor Unit-AC
- Single-Phase capacitor Unit

3 types of fuse configuration protection: Internal fuse, External fuse and Fuseless

 Oil immersed Capacitor Unit-DC
 Apply for DC Project

Special Capacitor

Three-phases Capacitor

Apply in industry project, improve power factor

Surge Capacitor

Apply in industry project, improve power factor

©ABB _____ March 7, 2017

7 Slide 5

HV Capacitor Unit Production Specification

Internally Fused

- Voltage Range: 1 14.4 kV
- Power Range: 100 1200kvar (50 or 60 Hz)

Externally Fused

- Voltage Range: 2.4 25 kV
- Power Range: 100 500 kvar (50 or 60 Hz)

Fuseless Units (ABB Design)

- Voltage Range: 12 25 kV
- Power Range: 300 1000 kvar (50 or 60 Hz)

Fuseless banks (Conventional Design)

- Voltage range: Min. 46 kV
- Power range: Min. 3 Mvar (50 Hz)

Standard :

- IEC60871-1 (2005)
- GB/T11024.1-2001
- DL
- IEEE
- Other standard req. by customers

HV Capacitor Unit Oil Type 3-PH Unit

- Voltage range: 2.4 20 kV
- Maximum power: 500kvar (50 or 60 Hz)
- Maximum current: 180A
- Internally connection: Δ or Y
- Apply for electric motor or industrial load, improve power factor

HV Capacitor Unit Oil Type Surge Unit

Single-phase (Europe, IEC)

- Voltage range: 1 36kV •
- Capacitance/electrode: 0.13 0.65uF
- Standard: IEC

Single-phase or Three-phase(US, ANSI/IEEE)

- Voltage range : 1 24kV
- Capacitance/electrode: 0.13 0.75uF
- Standard : IEEE

HV Capacitor Unit Raw material

Material Name	Main Character	
Aluminum Foil	Symmetric thickness and good electrical property advantages. The thinnestthickness could be reached to4.5um	
Polypropylene	Coarsening surface, stable property, high withstand capability, 9um films and above	
Film	are widely adopted.	
Faradol	Improving insulation strongth and biodogradable advantages, pop-PCB fluid	
impregnation fluid		
Bushing	The connection flange is colded pressed on the bushing which not only guarantees the insulation strength but also the mechanical strength and isolation.	
Internal fuse	Adopt special material, good quality, stability and high reliability.	
Discharge	Good at thermal stability and ability of overload;	
Resistor		
Tank	High strength and corrosionproof.	

HV Capacitor Unit Technology of Fuse

HV Capacitor Unit

Choose suitable fuse technology

How to choose fuse configuration depends on voltage and capacity

©ABB March 7, 2017 | Slide 11

HV Capacitor Unit

Internal fuse VS External fuse

Internal fused Capacitor

- Only one element damaged
- Less loss of capacitance
- limit current increasing
- suitable for big capacity capacitor unit
- no-direct observe for fuse disconnection
- Limited by range of voltage VS. capacity

External fused capacitor

- observe fuse disconnection directly
- fuse from outside
- cause short-circuit of parallel group
- more loss of capacitance
- can not limit current
- capacitor volume limited
- may not disconnect if high energy in parallel

Design Comparison

- Space saving
- Enhanced system availability
- and less maintenance

Design Comparison

	Unit	Fuse Type
Design A	BAM13.8-200-1W	External Fuse
Design B	BAM6.9-700-1W	Internal Fuse

©ABB March 7, 2017 | Slide 14

HV Capacitor Unit Definition of capacitor unit

©ABB March 7, 2017

| Slide 15

HV Capacitor Unit Capacitor Unit Construction

HV Capacitor Unit Design principle

HV Capacitor Unit Design principle

Consideration of safety plenty level

- Film layer (3-layers is normal)
 - Strong puncture- against ability

- Foil auto-folding of electrode

- Regular edge stress;
- Excellent partial discharge ability

HV Capacitor Unit Process Control

High quality raw materials, with optimized design scheme to guarantee the product life and reliability;

Barcode System records full production process as to ensure consistent quality;

©ABB March 7, 2017 | Slide 19

HV Capacitor Unit Production process

©ABB March 7, 2017 | Slide 20

HV Capacitor Unit

Module Assembly & Packing

Finish goods check for capacitor unit; Connection assembly; Rack assembly; Unit packing and module packing;

Modularized packages of product, conveniences for installation and shorten working time and cost at site

HV Capacitor Unit

Characters of Capacitor unit

- Advanced internally fused technology
- Lower loss
- High reliability
- Narrow capacitance deviation range
- Better weight/per kvar ratio;
- Good sealing;

- Inside discharge resistor
- Wide temperature range
- Suitable for varies of climate condition and frequent operations
- Tank painting gives a good reflection of ultraviolet, aging slowly, high anti-corrosion;
- Strict selection and control of auxiliary material to guarantee the quality stability of capacitor;
- Two-dimension ID nameplate, long term quality tracing and easy for follow-up purchasing

HV Capacitor Unit Characters of Capacitor unit

IEC60871-1 standard requirement

8.2 Loss requirements

The requirements regarding capacitor losses shall be agreed upon between manufacturer and purchaser.

The value of capacitor losses is that measured under the conditions of 8.1.

Requirement from China utility power company standard

5.2.4 损耗角正切值 (tgδ)

电容器在工频交流额定电压下,20℃时损耗角正切值应符合下列值:

纸膜复合介质的电容器应不大于 0.08%;

全膜介质的电容器:有放电电阻和内熔丝的应不大于0.05%;无放电电阻和内熔丝的应不大于0.03%。

ABB capacitor unit: 0.02% or 0.015%

40W/200 kvar or 30W/200kvar

200W/200kvar

Local company: 0.1%

©ABB March 7, 2017 | Slide 23

HV Capacitor Unit Characters of Capacitor unit

旭硝子 株式会社 千葉工場 御中

件 名 : 釉绿油中PCB分析

探 玻 年 月 日:平成24年10月25日

中外テクノス株式会社 関東環境技術センター 千葉県千葉市緑区大野台2丁目2番16 TEL 043 (295) 1101 (代)

環境計量士 安並 败

Б сарас		分析結果	を次のとおり	報告致します	. -	PCB(polychlorobipheny
武料名	容量	製造番号	製造年	形式	製造者	メリ塩化ビフェニル (単位:mg/kg)
¥ ABB社 コンデンサ用 絶縁油	-	12K01	-	-	-	検出 せず Not detectable
備考	「検出せず」 分析は持込試 mg/kgはppmと 0.5mg/kg以下	とは定量下限価料にて実施しま 間一の濃度単位 はPCB廃棄物	直未満のことで こした。 こです。 かに該当しませ	す。 ん。	۱ <u></u>	Detection limit 定量下限值 0, 15
分析方法	絶縁油中の微 2.1.2 加熱者	量PCBに関する 層シリカケ・ルカラム/フ	簡易測定法?=_ アルミナカラム/キャビラ	7⊮(平成23年5 リーGC/ECD法	5月 第3版)	0.15mg/kg(ppm)

Contents

Capacitor Unit

Capacitor Shunt Bank

Type Solution of Filter

©ABB March 7, 2017 | Slide 25

Capacitor Shunt Bank Function & Parameter range

Installed in Transmission and distribution network

- Increase transmission capability
- Improve power factor
- Lower line losses
- Enhance power quality

Voltage scope: 1 - 1000 kV Capacity range: 0.6 - 300 Mvar

Capacitor Shunt Bank Explanation of Type

Bank rated capacity	Unit rated capacity (H	W for outdoor Q for bridge differen A for single star
acity(kvar)	city (kvar)	erent current

BB for shunt bank

A for QBank-A

Bank rated voltage(kV)

© ABB Slide 27 March 7, 2017

Capacitor Shunt Bank Structure Reactor Lightning arrester Hot-galvanized steel rack Capacitor Connecting line Current Transform Discharge coil er Supporting insulator

Capacitor Shunt Bank Structure

QBANK-A

QBANK-B

QBANK-C

©ABB March 7, 2017 | Slide 29

Capacitor Shunt Bank Structure

QPLUS-A-Example

QPLUS-B-Example

QPLUS-C-Example

© ABB March 7, 2017

Slide 30

Features

May choose stainless, Hot dipped galvanized rack;

Low failure rate, annual failure rate is lower than 0.1% by statistic.

Easy to install. Capacitor unit & rack has been installed together in the factory.

May choose ABB's disconnection switch;

Specific connecting structure between BV cable and bushing;

High level of standardized installation.

Simple structure, easy to maintain

Slide 31

Anti-seismic simulation

©ABB | Slide 32 March 7, 2017

HVDC AC Tuning Filter

- Capacitors
- Rack
- Post Insulator
- Connection Cable
- Armour Clamp
- Current
 Transformer

Capacitor Shunt Bank HVDC DC Tuning Filter

- Capacitors
- Rack
- Post Insulator
- Connection Cable
- Armour Clamp

©ABB March 7, 2017 Slide 34

Test Capacitor Bank

©ABB March 7, 2017 | Slide 35

Accessary

Capacitor Bank

Series Compensation Installation for Distribution Grid/Railway

©ABB | Slide 37 March 7, 2017

Contents

What is Power Quality Capacitor Unit Capacitor Shunt Bank

Type Solution of Filter

©ABB March 7, 2017 | Slide 38

Type Solution of Filter Filtering concept

Type Solution of Filter Project Process

Type Solution of Filter Harmonics representation

Type Solution of Filter Power Quality Measurement

© ABB March 7, 2017

| Slide 42

Type Solution of Filter Power Quality Measurement

©ABB March 7, 2017 | Slide 44

©ABB March 7, 2017 | Slide 45

Type Solution of Filter

Type of Filters

©ABB March 7, 2017 | Slide 46

Type Solution of Filter Type of Filters

©ABB March 7, 2017 | Slide 47

©ABB March 7, 2017 | Slide 48

©ABB

Type Solution of Filter

March 7, 2017 Slide 49

Type Solution of Filter Harmonic Analysis

©ABB March 7, 2017 | Slide 50

Real Cases of Filter solution

Real Cases of Filter solution

Branch	5 th	7 th	11 th	
Model	TALA22- 5400/450BLW	TALA22-3600/300BLW	TALA22-5400/450BLW	
Capacity kvar	5400	3600	5400	
Capacitance µF	20.7	13.8	20.7	
Capacity /unit kvar	450	300	450	
Rated voltage kV	8.32			
Series & parallel	2 S 2 P			
Protect Type	Double-star unbalance current protection			
Inductance mH	19.68	15.14	4.21	

Real Cases of Filter solution

Benefit to Customer

Power factor increases from 0.87 to above 0.93(meet power department requirement)

Reduce harmonic; decrease the electrolytic aluminum time, electrolyzer overhaul cycle lengthened. Electrolytic aluminum productivity increased.

Running in later stage

 As for electrolytic aluminum electrolytic copper factory, adopt strong direct current electrolysis. So, the magnetic inductance of electro magnetic to nearby metal objects have to be taken into consideration. Magnetic metal as racks, accessories are not allowed.

Real Cases of Filter solution

©ABB

March 7, 2017 Slide 54

Type Solution of Filter Real Cases of Filter solution

©ABB March 7, 2017 | Slide 55

Type Solution of Filter Real Cases of Filter solution

,_)))) ()	Mode1(3-635V-19.04kA)			Mode2(4-615V-15.23kA)		
11kV voltage factor	1.05	1	0.95	1.05	1	0.95
Running branch	5,7,11	5,7,11	5,7,11	5,7,11	5,7,11	5,7,11
Stopped branch	13	13	13	13	13	13
PF	0.971	0.986	0.998	0.947	0.967	0.986
THDu%	4.449	4.532	4.613	4.308	4.388	4.464
System voltage distortion (kV)	0.31	0.27	0.23	0.31	0.27	0.23
	Mode3	3-520V-1	9.04kA)	Mode4	4-498V-1	15.23kA)
11kV voltage factor	1.05	1	0.95	1.05	1	0.95
Running branch	5,7,11 ,13	5,7,11 ,13	5,7,11 ,13	5,7,11 ,13	5,7,11 ,13	5,7,11 ,13
Stopped branch	1	1	1	1	1	1
PF	0.98	0.984	0.989	0.953	0.96	0.968
THDu%	1.646	1.684	1.729	1.642	1.678	1.722
System voltage distortion (kV)	0.55	0.48	0.37	0.55	0.48	0.41
a marcan la company	Mode5	3-505V-4	.08kA)	Mode6(4-505V-4.08kA)		
11kV voltage factor	1.05	1	0.95	1.05	1	0.95
Running branch	5,7	5,7	5,7	5,7	5,7	5,7
Stopped branch	11,13	11,13	11,13	11,13	11,13	11,13
PF	0.987	0.989	0.992	0.924	0.935	0.948
THDu%	1.819	1.783	1.743	2.191	2.148	2.098
distortion (kV)	0.14	0.12	0.1	0.14	0.12	0.1
	Mode7(3-435V-4.08kA)			Mode8(4-435V-4.08kA)		
11kV voltage factor	1.05	1	0.95	1.05	1	0.95
Running branch	5,7	5,7	5,7	5,7	5,7	5,7
Stopped branch	11,13	11,13	11,13	11,13	11,13	11,13
PF	0.953	0.954	0.957	0.852	0.864	0.878
THDu%	1.572	1.541	1.506	1.842	1.806	1.764
System voltage distortion (kV)	0.14	0.12	0.1	0.14	0.12	0.1
	Mode9(2-635V-19.04kA)					
11kV voltage factor	1.05	1	0.95			

©ABB March 7, 2017 | Slide 56

Real Cases of Filter solution 2013/04/14 11:20:06 2013/04/14 11:20:56 回路 1 2013/04/14 11:22:12 日期時间 回路 1 波形 メイン 回路 リスト U 150V II ORD 01 × 100.00 1.1622kA I 5A 100.00 % × 400.00 - 34.61deg ÇĄ, U 150V × 100.00 U 150V × 100.00 П 10.911kV 10.892kV 10.879kV 10.879kV 10.894kV 1.1687kA U1 U2 U3 Uave I1 I2 I3 Iave -I1 1:×1 1.1765kA 1.1773kA 1.1742kA I 5A × 400.00 I 5A × 400.00 İΤ 0023 0001 0007 0003 0006 0013 0006 00012 0009 0391 0009 0013 0006 0005 00013 0006 0005 +100% 結泉 3P3W3M 結泉 3P3W3M 結泉 3P3W3M TOTAL 12.639Mvar 22.155MVA 0.8213 49.926 Hz 5.970MW 6.158MW 6.068MW Q S PF f 1.1683kA P1 P2 P3 P 回路数 回路数 回路数 THD-F 10.24 % 50Hz PLL U1 50Hz U1 50Hz PLL 18.195MW PLL 108% 49.926 Hz 化为-11%1 WP+ 0:00:00 0.0000MWh インターハッル 10min インターハ[®]ル 10min 画面 次数 面面 CH 倍率 U 倍率 I ホールト 平均值 面面 CH 赤-ルト* 滅形 回路 1 2013/04/14 13:18:52 2013/04/14 13:17:01 回路 2013/04/14 13:18:01 瞬時值 回路 リスト メイン 2.9856kA 3.0040kA 3.0018kA 2.9972kA _____I1_1:×1/2 U 150V × 100.00 ORD 01 × 100.00 U 150V × 100.00 10.912kV 10.889kV 10.881kV 10.894kV U1 U2 U3 Uave I1 I2 I3 Iave 2.9855kA 100.00 % - 5.60deg I 5A × 800.00 17050-009059054055405596444497 19050-00905405581-009054044497 19751-0050-0090540557-000000 19572-00557-000000 19502-00557-000000 19502-00905900 19502-0090590 19502-00905905405 19502-00905905405 19502-00905905405 19502-00905905405 19502-00905905405 19502-00905905405 19502-00905905405 19502-00905905405 19502-00905905405 19502-00905905405 19502-00905905405 19502-00905905405 19502-00005 19502-00005 19502-0000 19502-0 I 5A 5A × 800.00 × 800.00 100% - SP3W3M 結泉 3P3W3M 結線 SP3W3M TOTAL 2.9859kA 18.596MW 18.884MW 18.796MW 56.276MW 5.590Mvar 56.553MVA 0.9951 49.994 Hz Q S PF 101123456 P1 P2 P3 P 回路数 回路数 回路数 THD-F 1.61 % U1 50Hz f PLL PLL 50Hz PLL U1 50Hz WP+ 0.0000MWh 0:00:00 化另一八°ル 10min 49.994 Hz 化为-11%11 10min インターバッル 10min 平均值 面面 **ホールト**[∞] 画面 CH 次数 ホールト、 画面 CH 倍率 U 倍率 ホールト〝

©**ABB** March 7, 2017

| Slide 57

Real Cases of Filter solution

Real Cases of Filter solution

Type Solution of Filter Real Cases of Filter solution

1.1. For capacitor bank analysis

1.1.1. Parameters design of the components:

- Capacitor bank
- Reactor
- · Arrester
- Magnetic Voltage Transformer
- · Current transformer
- · Earthing switch
- 1.1.2. Characteristic curve of MFC Frequency Impedance
- 1.1.3. Modeling the capacitor bank by PSCAD
- 1.1.4. Inrush current analysis
- 1.1.5. Transient voltage analysis
- 1.1.6. Insulation coordination calculation

1.2. For power system

- 1.2.1. Power factor & Voltage rise analysis
- 1.2.2. Resonance analysis
- · Harmonic resonance frequency calculation
- Frequency scan by PSCAD model with 4*100Mvar bank
- operating
- 1.2.3. Harmonic analysis

Type Solution of Filter **Real Cases of Filter solution**

©ABB | Slide 61 March 7, 2017

ARR

Real Cases of Filter solution

		THE	Total		
	ABB Xian Result	ABB PSC	Result(R2)	ABB PSC Result(R3)	
Operation Case	2017-peak- A2B2C3 (BASE CASE)	2016-Light- A1B1C1 (BASE CASE)	2016-Light- A1B1C1 (CRITICAL CONTINGENCY)	2017-light- A2B1C1 (BASE CASE)	2017-light- A2B1C1 (CRITICAL CONTINGENCY)
Without filters	3.00%	3.23%	4.46%	2.96%	3.68%
1*H5 filter	2.80%	3.05%	3.84%	2.57%	3.29%
1*H3 filter	2.00%	2.80%	3.62%	2.54%	2.97%
1*H3+H5 filters	1.60%	2.35%	3.02%	2.08%	2.40%
2*H3 filters	1.71%	2.54%	3.07%	2.19%	2.49%
2*H3+H5 filters	1.40%	2.08%	2.47%	1.72%	1.90%
3*H3 filters	1.51%	2.25%	2.69%	1.93%	2.16%
3*H3+H5 filters	1.30%	1.81%	2.14%	1.47%	1.59%

Real Cases of Filter solution

Quantity	2sets
Rated voltage(kV)	35
Rated capacity(Mvar)	
H2 Filt	er 54.1
H3 Filt	er 28.8
H4 Filt	er 13.4

©ABB March 7, 2017 | Slide 63

Real Cases of Filter solution

Real Cases of Filter solution

- Variant kinds of load, DC/AC Drive, DC/AC arc furnace
- Issues with harmonic, low PF, and loadbalancing
- Mixed solution with Dynacomp, MV filter, and MV SVG
- Aiming to have a standard sizing tool for future use

